Greedy approximation with regard to non-greedy bases
نویسندگان
چکیده
Peixin Ye Nankai University, China [email protected] In this talk we discuss which properties of a basis are important for certain direct and inverse theorems in nonlinear approximation. We study greedy approximation with regard to bases with different properties. We consider bases that are tensor products of univariate greedy bases. Some results known for unconditional bases, such as Lebesgue-type inequality, are extended to the case of quasi-greedy bases.
منابع مشابه
No greedy bases for matrix spaces with mixed lp and lq norms
We show that non of the spaces ( ⊕∞ n=1 lp)lq , 1 ≤ p ̸= q < ∞ have a greedy basis. This solves a problem raised by Dilworth, Freeman, Odell and Schlumprect. Similarly, the spaces ( ⊕∞ n=1 lp)c0 , 1 ≤ p < ∞, and ( ⊕∞ n=1 co)lq , 1 ≤ q < ∞, do not have greedy bases. It follows from that and known results that a class of Besov spaces on Rn lack greedy bases as well.
متن کاملOn the Existence of Almost Greedy Bases in Banach Spaces
We consider several greedy conditions for bases in Banach spaces that arise naturally in the study of the Thresholding Greedy Algorithm (TGA). In particular, we continue the study of almost greedy bases begun in [3]. We show that almost greedy bases are essentially optimal for n-term approximation when the TGA is modified to include a Chebyshev approximation. We prove that if a Banach space X h...
متن کاملLebesgue-type Inequalities for Quasi-greedy Bases
We show that for quasi-greedy bases in real or complex Banach spaces the error of the thresholding greedy algorithm of order N is bounded by the best N term error of approximation times a function of N which depends on the democracy functions and the quasi-greedy constant of the basis. If the basis is democratic this function is bounded by C logN . We show with two examples that this bound is a...
متن کاملGreedy bases are best for m-term approximation
We study the approximation of a subset K in a Banach space X by choosing first basis B and then using n-term approximation. Into the competition for best bases we enter all unconditional bases for X. We show that if the subset K ⊂ X is well aligned with respect to a greedy basis B then, in certain sense, this basis is the best for this type of approximation. Our result extends the recent result...
متن کاملRenormings and symmetry properties of 1-greedy bases
We continue the study of 1-greedy bases initiated by F. Albiac and P. Wojtaszczyk [1]. We answer several open problems they raised concerning symmetry properties of 1-greedy bases and the improving of the greedy constant by renorming. We show that 1-greedy bases need not be symmetric nor subsymmetric. We also prove that one cannot in general make a greedy basis 1-greedy as demonstrated for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 34 شماره
صفحات -
تاریخ انتشار 2011